Pentacyclo[12.2.1.1 ${ }^{6,9} .0^{2,13} .0^{5,10}$ octadeca- 7,15 -diene-17,18-dione

By J. Gabriel Garcia, Frank R. Fronczek and Mark L. Mclaughlin*
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 19 November 1990; accepted 4 March 1991)

Abstract

C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}, M_{r}=268 \cdot 4\), monoclinic, $P 2_{1} / n, a$ $=6.4779$ (4),$\quad b=9.2310$ (14), $\quad c=12 \cdot 0021$ (12) \AA, $\beta=98.392$ (7) ${ }^{\circ}, \quad V=710.0$ (2) $\AA^{3}, \quad Z=2, \quad D_{x}=$ $1.255 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.54184 \AA, \quad \mu=$ $5.95 \mathrm{~cm}^{-1}, F(000)=288, T=297 \mathrm{~K}, R=0.034$ for 1310 observations with $I>3 \sigma(I)$ (of 1457 unique data). The molecule lies on a center of symmetry and the cyclooctane ring adopts the chair conformation. The near-zero torsion angle of the chair occurs at the ring-fusion bonds and has a magnitude of $0.8(1)^{\circ}$. The $\mathrm{C}=\mathrm{C}$ bond has a length of 1.325 (2) \AA and the $\mathrm{C}=\mathrm{O}$ bond length is $1 \cdot 197$ (2) \AA. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle at the carbonyl bridge is small with a magnitude of $97.20(9)^{\circ}$.

Experimental. The title compound was prepared by allowing endo,endo,anti-17,17,18,18-tetramethoxypentacyclo[12.2.1.1 $\left.{ }^{6,9} .0^{2,13} .0^{5,10}\right]$ octadeca-7,15-diene (Garcia, Fronczek \& McLaughlin, 1991a) to react with an 80% solution of glacial acetic acid in water at $328-332 \mathrm{~K}$ (Grimme \& Wiechers, 1987). Crystals

of the title compound grown by slow cooling of toluene, m.p. 497-499 K, were suitable; a clear colorless crystal with dimensions $0.15 \times 0.28 \times 0.40 \mathrm{~mm}$ was used for data collection on an Enraf-Nonius CAD-4 diffractometer with $\mathrm{Cu} K \alpha$ radiation and a graphite monochromator. Cell dimensions were determined from setting angles of 25 reflections having $30>\theta>26^{\circ}$. The $\omega-2 \theta$ scans were designed for $I=25 \sigma(I)$, subject to max. scan time $=90 \mathrm{~s}$, scan rates varied from $0.61-3 \cdot 30^{\circ} \mathrm{min}^{-1}$. Two quadrants of data having $2<\theta<75^{\circ}, 0 \leq h \leq 8,-11 \leq k \leq 11$, $-15 \leq l \leq 15$ were measured and corrected for background, Lorentz, polarization and absorption. Absorption corrections were based on ψ scans, with \min. relative transmission coefficient 0.9097 . Three standard reflections ($400,020,004$) were measured

[^0]0108-2701/91/092009-03\$03.00
every 10000 s and exhibited only random intensity variation. 3228 measurements were made. The two equivalent quadrants were averaged, $R_{\text {int }}=0.013$, yielding 1457 unique data of which 1310 had I> $3 \sigma(I)$ and were used in the refinement. The structure was solved by direct methods using MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980), refined by full-matrix least squares based upon F, with weights $w=4 F_{o}^{2}\left[\sigma^{2}(I)+\right.$ $\left.\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$, using the Enraf-Nonius Structure Determination Package (Frenz \& Okaya, 1980), scattering factors of Cromer \& Waber (1974), and anomalous coefficients of Cromer (1974). Heavyatom coordinates were refined with anisotropic thermal parameters; H -atom coordinates were located by ΔF synthesis and were refined with isotropic thermal parameters. Final $R=0.034$ for 1310 observed data (0.039 for all 1457 data), $w R=0.056$ and $S=3.207$ for 132 variables. Max. shift $<0.01 \sigma$ in the final cycle, max. residual density $0.17, \mathrm{~min} .-0.12 \mathrm{e} \AA^{-3}$, and extinction coefficient $g=1.07(8) \times 10^{-5}$, where the factor $\left(1+g I_{c}\right)^{-1}$ was applied to F_{c}. The fractional coordinates of the title compound are given in Table 1. Fig. 1 is a perspective drawing showing the atom numbering for the title molecule, and Fig. 2 shows the unit cell. Bond distances, angles, and selected torsion angles are presented in Table $2 . \dagger$

Related literature. Single-bond distances which are analogous to $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 4-\mathrm{C} 5$ are found in 1,2,4,5,6,7,8,9-octachloro-10,10-dimethoxytricyclo [5.2.1.0 ${ }^{2,6}$]deca-4,8-dien-3-one, $1 \cdot 572$ (3) and 1.573 (3) \AA (Galesic, Matijasic \& Bruvo, 1985); 3,-4,5,6-tetrachloro-12,12-dimethoxy-9,10-bis(methoxy-carbonyl)-exo,endo-pentacyclo[6.2.1.1 ${ }^{3,6} .0^{2,7}$]-dodeca-4,9-diene, $1 \cdot 550$ (4) and 1.556 (3) \AA (Battiste, Griggs, Sackett, Coxon \& Steel, 1987); [(9,10- η^{2} :11σ)-3,4,5,6-tetrachloro-12,12-dimethoxy-9,10-bis-(methoxycarbonyl-exo,endo-tetracyclo[6.2.1.-

[^1]© 1991 International Union of Crystallography

Table 1. Coordinates and equivalent isotropic thermal parameters

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
0	$0 \cdot 3844$ (2)	$0 \cdot 5074$ (1)	0.63879 (9)	$6 \cdot 66$ (3)
Cl	$0 \cdot 6532$ (2)	0.3167 (1)	0.63494 (9)	$4 \cdot 33$ (2)
C2	$0 \cdot 6898$ (2)	0.2351 (1)	0.7444 (1)	$5 \cdot 08$ (2)
C3	$0 \cdot 5066$ (2)	$0 \cdot 1953$ (1)	0.77108 (9)	4.91 (3)
C4	0.3378 (2)	$0 \cdot 2468$ (1)	0.68085 (9)	$4 \cdot 19$ (2)
C5	0.3536 (2)	0.1585 (1)	0.57075 (8)	$3 \cdot 28$ (2)
C6	0.5705 (2)	$0 \cdot 2075$ (1)	0.53867 (8)	$3 \cdot 33$ (2)
C7	0.4455 (2)	0.3851 (1)	0.65012 (9)	4.57 (2)
C8	0.7295 (1)	0.0902 (1)	0.52349 (8)	3.57 (2)
C9	0.3173 (2)	-0.0031 (1)	$0 \cdot 58623$ (9)	$3 \cdot 40$ (2)

Table 2. Bond distances (\AA), angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$
$\mathrm{O}-\mathrm{C} 7$
$\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{C} 1-\mathrm{C} 6$
$\mathrm{C}-\mathrm{C} 7$
$\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$
$\mathrm{C}-\mathrm{C} 4-\mathrm{C} 7$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9$
$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 8$

1.197 (2)	C4-C5	1.569 (2)
1.503 (2)	C4-C7	1.526 (2)
1.567 (1)	C5-C6	1.576 (1)
1.521 (2)	C5-C9	1.526 (1)
1.325 (2)	C6-C8	1.524 (1)
1.500 (2)	C8-C9'	1.535 (1)
108.41 (9)	C6-C5-C9	117.97 (8)
97.6 (1)	C1-C6-C5	103.03 (8)
98.17 (8)	C1-C6-C8	112.38 (8)
$108 \cdot 5$ (1)	C5-C6-C8	117.87 (8)
$108 \cdot 8$ (1)	$\mathrm{O}-\mathrm{C} 7-\mathrm{Cl}$	131.4 (1)
108.26 (9)	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 4$	131.4 (1)
97.4 (1)	C1-C7-C4	97.20 (9)
98.21 (9)	C6-C8-C9'	115.00 (7)
103.09 (8)	C5-C9-C8	115.00 (8)
112.05 (8)		
0.8 (1)	C4-C5-C6-Cl	0.5 (1)
0.4 (1)	$\mathrm{C5}-\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 9^{\prime}$	74.8 (1)
-76.6 (1)	C6-C8-C9'-C5'	-117.8 (1)

Fig. 1. ORTEP (Johnson, 1965) drawing of the title molecule. Heavy atoms represented as 40% probability ellipsoids and \mathbf{H} atoms as circles of arbitrary radius.

Fig. 2. Stereoview of unit cell. \mathbf{c} is vertical, \mathbf{b} is horizontal and \mathbf{a} is into the plane of the paper.
$\left.1^{3,6} .0^{2,7}\right]$ dodeca-4,9-dien-11-yl](η^{5}-cyclopentadienyl)nickel(II), 1.546 (3) and 1.550 (3) \AA (Battiste et al., 1987); 1,2,3,4,7,7-hexachloro-5,6-bis(chloromethyl)-bicyclo[2.2.1]hept-2-ene [Alodan (Hoechst) ${ }^{\text {® }}$], 1.568 (7) and 1.549 (7) \AA (Kennard, Smith \& Palm, 1981); endo,endo,anti-1,6,7,8,9,14,15,16-octachloro-17,17,18,18-tetramethoxypentacyclo[12.2.1.1. ${ }^{6,9} .0^{2,13}$ $.0^{5,10}$]octadeca- 7,15 -diene, $1 \cdot 561$ (3) and $1 \cdot 555$ (4) \AA (Garcia et al., 1991a); endo,endo,anti-17,17,18,18tetramethoxypentacyclo[12.2.1.1 $1^{6,9} \cdot 0^{2,13} .0^{5,10}{ }^{10}$ octa-deca-7,15-diene, $1 \cdot 566$ (1) and $1 \cdot 564$ (1) \AA (Garcia et al., 1991a); endo,endo,anti-1,6,7,8,9,14,15,16-octachloropentacyclo[12.2.1.1.1 $\left.{ }^{6,9} .3^{2,13} .0^{5,10}\right]$ octadeca- $7,15-$ diene, 1.553 (4) and 1.560 (3) \AA (Garcia, Fronczek \& McLaughlin, 1991b) are similar to those in the title compound: 1.567 (1) and 1.569 (2) \AA, respectively. The bond angle $\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 4$ [97-20 (9) ${ }^{\circ}$] of the title compound is similar to the analogous bond angles of 1,2,4,5,6,7,8,9-octachloro-10,10-dimethoxytricyclo [5.2.1.0 ${ }^{2,6}$]deca-4,8-dien-3-one [91.6 (1) ${ }^{\circ}$] (Galesic et al., 1985); 3,4,5,6-tetrachloro-12,12-dimethoxy-9,10-bis(methoxycarbonyl)-exo,endo-pentacyclo[6.2.1.$\left.1^{3,6} .0^{2,7}\right]$ dodeca- 4,9 -diene and $\left[\left(9,10-\eta^{2}: 11 \sigma\right)\right.$ -3,4,5,6-tetrachloro-12,12-dimethoxy-9,10-bis(meth-oxycarbonyl)-exo,endo-tetracyclo[6.2.1.1.1 ${ }^{3,6} .0^{2,7}$]do-deca-4,9-dien-11-yl] (η^{5}-cyclopentadienyl)nickel(II) [90.9 (2) and 90.7 (2) ${ }^{\circ}$, respectively] (Battiste et al., 1987); 1,2,3,4,7,7-hexachloro-5,6-bis(chloromethyl)-bicyclo[2.2.1]hept-2-ene [Alodan (Hoechst) ${ }^{\text {® }}$] [92.9 (4) ${ }^{\circ}$] (Kennard et al., 1981); endo,endo,anti-1,6,7,8,9,14,15,16-octachloro-17,17,18,18-tetramethoxypentacyclo $\left[12.2 .1 .1^{6,9} \cdot 0^{2,13} .0^{5,10}\right]$ octadeca- 7,15 diene [90.9 (2) ${ }^{\circ}$] (Garcia et al., 1991a); endo,endo-,anti-17,17,18,18-tetramethoxypentacyclo[12.2.1.16,9$\left..0^{2,13} .0^{5,10}\right]$ octadeca-7,15-diene [93•88 (8) ${ }^{\circ}$ (Garcia et al., 1991a); endo,endo,anti-1,6,7,8,9,14,15,16-octachloropentacyclo[12.2.1.1..$^{6,9} .0^{2,13} .0^{5,10}$]octadeca-7,15diene $\left[92 \cdot 2\right.$ (2) ${ }^{\circ}$] (Garcia et al., 1991b). The C7-O bond distance of 1.197 (2) \AA is in accord with literature data (Coxon, O'Connell \& Steel, 1985; Blom, Kanters \& Kroon, 1981; Balasubrahmanyam, Usha \& Venkatesan, 1981). The angle C1-C7-C4 at the carbonyl bridge is small with a magnitude of $97 \cdot 20(9)^{\circ}$.

We thank the Louisiana Educational Quality Support Fund Grant LEQSF(1987-90)-RD-A-5 for support of this research.

References

Balasubrahmanyam, S. N., Usha, R. \& Venkatesan, K. (1981). Acta Cryst. B37, 629-634.
Battiste, M. A., Griggs, B. G. Jr, Sackett, D., Coxon, J. M. \& Steel, P. J. (1987). J. Organomet. Chem. 330, 437-446.

Blom, N. S., Kanters, J. A. \& Kroon, J. (1981). Cryst. Struct. Commun. 10, 483-488.
Coxon, J. M., O’Connell, M. J. \& Steel, P. J. (1985). Aust. J. Chem. 38, 1223-1231.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Galesic, N., Matijasic, I. \& Bruvo, M. (1985). Acta Cryst. C41, 1662-1664.

Garcia, J. G., Fronczek, F. R. \& Mclaughlin, M. L. (1991a). Acta Cryst. C47, 206-209.
Garcia, J. G., Fronczek, F. R. \& Mclaughlin, M. L. (1991b). Acta Cryst. C47, 451-453.
Grimme, W. \& Wiechers, G. (1987). Tetrahedron Lett. 28, 6035-6038.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kennard, C. H. L., Smith, G. \& Palm, T. B. (1981). Acta Cryst. B37, 1953-1955.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1991). C47, 2011-2012

Structure of 2,3-Bis(2-pyridyl)pyrazine

By Nuh-T. Huang, William T. Pennington and John D. Petersen
Department of Chemistry, Clemson University, Clemson, SC 29634-1905, USA

(Received 14 January 1991; accepted 27 February 1991)

Abstract

C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}\) (dpp), $\quad M_{r}=234 \cdot 26$, orthorhombic, $\mathrm{Pbcn}, a=16.439$ (3), $b=9.448$ (2), $c=$ 7.478 (2) $\AA, \quad V=1161 \cdot 5(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.34 \mathrm{~g} \mathrm{~cm}^{-3}$, graphite-monochromated Mo $K \alpha, \lambda=$ $0.71073 \AA, \quad \mu=0.8 \mathrm{~cm}^{-1}, \quad F(000)=488, \quad T=$ 294 (1) K, $R=0.048$ for 630 observed reflections. The molecule has crystallographic twofold rotational symmetry. The rotation axis passes through the midpoints of the pyrazine carbon-carbon bonds. The pyrazine and pyridine rings are planar, with mean deviations from planarity of 0.007 and $0.001 \AA$, respectively; the dihedral angle between pyrazine and pyridine rings is $42 \cdot 2^{\circ}$ and between the two pyridine rings is $54 \cdot 1^{\circ}$.

Experimental. Colorless, parallelepiped crystal, dimensions $0.32 \times 0.37 \times 0.43 \mathrm{~mm}$. The compound (I) was crystallized from an aqueous manganese(II) perchlorate solution. Nicolet $R 3 \mathrm{~m} / V$ diffractometer,

0108-2701/91/092011-02\$03.00
$\omega / 2 \theta$ scans of $2-15^{\circ} \min ^{-1}, 2 \theta_{\text {max }}=45^{\circ}, h=0$ to 18, $k=-11$ to $0, l=0$ to 9,756 unique measurements, 630 observed $[I>3 \sigma(I)]$. Unit-cell dimensions determined by least-squares fit to settings for 47 reflections ($27<2 \theta<45^{\circ}$). No absorption correction; three standards monitored ($3 \overline{3} 2,522,114$; $\pm 1 \%), 9 \cdot 0 \mathrm{~h}$ of X-ray exposure. Solved by direct methods; full-matrix least-squares refinement on F, R $=0.0478, \quad w R=0.0694, \quad S=2.49, \quad(\Delta / \sigma)_{\max }=0.01$, 102 variables including positional and anisotropic thermal parameters for the non-H atoms. H atoms were located by difference Fourier techniques and refined isotropically. Function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1 / \sigma^{2}\left(F_{o}\right) ; \quad \sigma\left(F_{o}\right)$ was estimated from counting statistics. Final difference Fourier peaks ranged from -0.19 to $0.21 \mathrm{e}^{-3} \AA^{-3}$. Computer programs from SHELXTL (Sheldrick, 1986), scattering factors (Cromer \& Waber, 1974) and real and imaginary anomalous-dispersion corrections (Cromer, 1974). Final atomic coordinates are given in Table 1,* and distances and angles in Table 2; the molecule is shown in Fig. 1.

Related literature. A related compound, 2,3-bis(2pyridyl)quinoxaline (dpq), has been structurally characterized (Rasmussen, Richter, Yi, Place \&

[^2]
[^0]: * Author to whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, bond distances and angles involving H atoms, torsion angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54060 (13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Lists of structure factors, anisotropic thermal parameters, a summary of crystallographic details and a packing diagram have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54046 (8 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1991 International Union of Crystallography

